منابع مشابه
Charge transport in organic semiconductors.
2.2. Materials 929 2.3. Factors Influencing Charge Mobility 931 2.3.1. Molecular Packing 931 2.3.2. Disorder 932 2.3.3. Temperature 933 2.3.4. Electric Field 934 2.3.5. Impurities 934 2.3.6. Pressure 934 2.3.7. Charge-Carrier Density 934 2.3.8. Size/molecular Weight 935 3. The Charge-Transport Parameters 935 3.1. Electronic Coupling 936 3.1.1. The Energy-Splitting-in-Dimer Method 936 3.1.2. The...
متن کاملCharge transport in organic semiconductors.
Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes o...
متن کاملCharge-carrier transport in amorphous organic semiconductors
Organic semiconductors have been extensively studied ever since the successful fabrication of organic light-emitting diodes (OLED).4 2-44 Due to their success, it is becoming increasingly important to understand the theory behind the properties of organic materials. In order to exploit all the advantages of implementing organic materials to construct devices, a detailed understanding of charge-...
متن کاملField Dependent Charge Carrier Transport for Organic Semiconductors at the Time of Flight Configuration
In this paper, we used the time-of-flight (TOF) of a charge packet, that injected by a voltage pulse to calculate the drift velocity and mobility of holes in organic semiconducting polymers. The technique consists in applying a voltage to the anode and calculating the time delay in the appearance of the injected carriers at the other contact. The method is a simple way to determine the charge t...
متن کاملCharge-based quantum computing using single donors in semiconductors
Solid-state quantum computer architectures with qubits encoded using single atoms are now feasible given recent advances in atomic doping of semiconductors. Here we present a charge qubit consisting of two dopant atoms in a semiconductor crystal, one of which is singly ionised. Surface electrodes control the qubit and a radiofrequency single electron transistor provides fast readout. The calcul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics
سال: 2020
ISSN: 1943-2879
DOI: 10.1103/physics.13.s155